Skip to main content

Thermally Evaporated In2O3 Nanoloquats with Tunable Broad-Band Emissions

Buy Article:

$105.00 plus tax (Refund Policy)

We describe synthesis of In2O3 nanoloquats grown by thermal evaporation under different oxygen flow rates and temperatures. Gold nanoparticles were used the catalysts and were dispersed on the silicon wafer to assist growth of In2O3 nanoloquats. The nanostructures of In2O3 nanoloquats were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The photoluminescence study reveals that In2O3 nanoloquats could emit different broad-band luminescence peaks in the range of 410∼620 nm by tuning different oxygen flow rates and temperatures. The wide tuning range in the emission peaks of In2O3 nanoloquats has potential in applications of white light illumination.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more