Skip to main content

Growth, Characterization and Gas Sensing Properties of Nanotetrapod ZnO

Buy Article:

$107.14 + tax (Refund Policy)

ZnO nanotetrapods have been obtained in large quantities by carbothermal reduction of ZnO powder. These were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, UV-visible spectroscopy and photoluminescence. Electron microscopy revealed that the overall size of the tetrapods is 1.5–2 μm and legs are 30–50 nm in diameter. The size of tetrapods as well as diameter of the legs was found to increase with deposition temperature. Photoluminescence spectra revealed that green emission originating from oxygen vacancies overwhelmed that of the near-band-edge ultraviolet peak. A band gap of 3.27 eV was calculated from optical absorption spectra which agreed well with that estimated from PL spectra. Gas sensing properties of tetrapods were investigated and these were found to be 5 times more sensitive to H2S gas at room temperature in comparison to ZnO bulk polycrystalline material.

Keywords: GAS SENSOR; NANOTETRAPODS; OPTICAL MEASUREMENTS; ZINC OXIDE

Document Type: Research Article

Publication date: 01 August 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content