Skip to main content

Excimer Laser Irradiation Effects on Soft Magnetic Properties of Sputtered Iron Nitride Thin Films

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Effect of pulse laser irradiation on soft magnetic properties of reactively sputtered iron nitride thin film has been studied. The as-deposited films exhibit large coercivity in the range 54 Oe to 148 Oe. Laser irradiation results in remarkable decrease in the coercivity of the films, the minimum value achieved being 8 Oe. X-ray diffraction measurements evidence structural relaxation in the films, resulting in densification. Surface roughness of the films exhibits only a marginal increase after laser irradiation. The observed decrease in the coercivity may be attributed to the relaxation of some quenched-in stresses associated with structural relaxation in the films. Irradiation as a function of energy density of laser pulse shows that an optimum energy density is required to achieve the best soft magnetic properties, which can vary from sample to sample.

Keywords: COERCIVITY; IRON NITRIDE; LASER IRRADIATION; MAGNETIC THIN FILMS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2008.AN09

Publication date: 2008-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more