Skip to main content

Computational Models in Nano-Bioelectronics: Simulation of Ionic Transport in Voltage Operated Channels

Buy Article:

$105.00 plus tax (Refund Policy)

In this article, a novel mathematical and computational model is proposed for the numerical simulation of Voltage Operated ionic Channels (VOC) in Nano-bioelectronics applications. This is a first step towards a multi-physics description of hybrid bio-electronical devices such as bio-chips. The model consists of a coupled system of nonlinear partial differential equations, comprising a Poisson-Nernst-Planck system to account for electro-chemical phenomena, and a Navier-Stokes system to account for fluid-mechanical phenomena. Suitable functional iteration techniques for problem decoupling and finite element methods for discretization are proposed and discussed. Numerical results on realistic VOCs illustrate the validity of the model and its accuracy by comparison with relevant computed channel equivalent electrical parameters with measured data.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more