Skip to main content

Chemisorption of CO on Au/TiOx/Pt(111) Model Catalysts with Different Stoichiometry and Defectivity

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Au/TiOx/Pt(111) model catalysts were prepared starting from well characterized TiOx/Pt(111) ultrathin films, according to an established procedure consisting in a reactive evaporation of Ti, subsequent thermal treatment in O2 or in UHV, and final deposition of submonolayer quantities of Au. Temperature Programmed Desorption measurements were performed to compare the interaction of CO in the case of two reduced TiOx/Pt(111) substrates (indicated as w-TiOx and w′-TiOx, being the former characterized by an ordered array of defects that can act as template for the deposition of a stable array of Au nanoparticles), with the case of a stoichiometric rect′-TiO2/Pt(111) substrate. It was found that in all cases CO is molecularly adsorbed and two different desorption peaks are detected: one at ≈140 K corresponding to CO desorption from less active adsorption sites (terraces) of the Au nanoparticles and one at ≈200 K corresponding to CO desorption from Au nanoparticles step sites. After annealing at 770 K, the high temperature CO desorption peak is still present in the case of the defective reduced w-TiOx phase, supporting the good templating and stabilizing effect of such phase. On the rect′-TiO2 stoichiometric phase, the CO uptake decreases after annealing but only to a minor extent.

Keywords: AU NANOPARTICLES; CO CHEMISORPTION; MODEL CATALYST; TITANIA TEMPLATES; TPD; ULTRATHIN FILMS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2008.386

Publication date: 2008-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more