Skip to main content

Synthesis and Characterization of Al2O3/SiO2 Coaxial Nanowire Heterostructures with Periodical Twinning Structures

Buy Article:

$113.00 plus tax (Refund Policy)

Al2O3/SiO2 coaxial nanowire heterostructures were synthesized on a silicon substrate by a simple thermal evaporation method. The structure and morphology of the as-synthesized nanostructure were characterized using scanning electron microscopy and transmission electron microscopy. The growth of Al2O3/SiO2 coaxial nanowire heterostructures follows a vapor-solid (VS) process. Studies indicate that typical nanostructure consists of single twinning-crystalline Al2O3 nanowires (core) with diameter of about 50 nm and amorphous SiO2 shell. Photoluminescence properties were also investigated at room temperature. The photoluminescence spectrum reveals the product has a blue emission band and two UV emission bands.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more