Skip to main content

Dielectrophoretic Assembly of Single Gold Nanoparticle into Nanogap Electrodes

Buy Article:

$113.00 plus tax (Refund Policy)


We report the optimization study of assembling single 20 nm gold nano-particle in 20 nm spaced electrode gap via ac dielectrophoresis (DEP) technique. It was observed that time, voltage, and frequency variations influenced significantly the assembly of gold nano-particle in the nano-gap electrodes. Frequency variation study revealed that at lower frequencies (<1 MHz) the assembling was observed in low field regions; however, at a moderate frequency of 1 MHz, minimum number of nano-particles was assembled in high field region. Trapping of single 20 nm nano-particle in 20 nm spaced electrodes was successfully achieved under the optimized DEP parameters i.e., frequency, applied voltage and time of values corresponding to 1 MHz, 2 V, and 1 sec, respectively, with the yield of almost 66%. Our results show the promise of optimized dielectrophoresis in the future nano-engineering.


Document Type: Research Article


Publication date: 2008-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more