If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Mesoporous Silicas Impregnated with Cobalt and Nickel Oxide Nanoparticles and the Growth of Carbon Nanotubes There from

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Metal oxide-based nanoparticles of cobalt or nickel were deposited inside the pores and on the surface of hexagonal mesoporous silicas by a direct synthesis technique using Pluronic P85 and P123 surfactants as structure directing agents with the appropriate metal phthalocyanine as a metal precursor. Metal loadings were between 0.4–3.2 wt.%. XPS studies showed that the initial form of the metal oxide nanoparticles were [CoO] and [NiO] respectively. Samples of these materials formed from the P85 surfactant and 3.0 wt.% were used to grow carbon nanotubes (CNTs) from acetylene feedstock in a catalytic chemical vapour deposition (CCVD) reactor at 800 °C. CNT growth appeared to be random and the CNTs had diameters ranging from <10 to >90 nm. Treatment of the metal impregnated silicas with nitric acid produced materials which, under the same CNT growth conditions, afforded more uniform CNTs with diameters between 5–15 nm. No significant loss in mesophase ordering was seen in the TEM, PXRD or nitrogen physisorption analysis of the acid washed samples. CNTs grown with cobalt impregnated silicas formed with the P123 surfactant had diameters in the range 15–25 nm. Raman spectroscopy of the CNT products showed the nanotubes were highly graphitised and of good quality.

Keywords: MESOPOROUS SILICA; NANOPARTICLES; NANOTUBES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2008.400

Publication date: July 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more