Skip to main content

Hydrogen-Bonding Layer Protecting Polyelectrolyte Capsules and Its Mechanical Property Study with Atomic Force Microscope

Buy Article:

$113.00 plus tax (Refund Policy)


The hydrogen-bonding multilayered polyelectrolyte capsules with sizes around 6 m were fabricated by layer-by-layer self-assembly method. The morphology of the obtained capsules was observed with Scanning Electron Microscope (SEM), Confocal Laser Scanning Microscope (CLSM) and Atomic Force Microscope (AFM), respectively. The elastic properties of the capsules were studied with AFM. The capsule was pressed by cantilever with different lengths, a glass bead glued at the end of the cantilever. The force curves were measured on the capsule in air. The Young's modulus of the capsule was obtained (E = 170 MPa for the loading). Results show that this model can predict the elastic deformation of the microcapsule. The accuracy of the elastic deformation of polymer capsule can be ensured using a cantilever of mediate stiffness. Our results show that the existence of the hydrogen-bonding layer makes the multilayered polyelectrolyte harder in comparison with the pure multilayered polyelectrolyte capsules.


Document Type: Research Article


Publication date: 2008-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more