High Molecular Weight Polyethylene Nanospheres: Synthesis, Physical and Mechanical Properties—Second Harmonic Generation

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The weak second harmonic light generating from carbon nanotubes are detected. The signal intensity closely related to the density of -bonds attributed to the defects in the rolled graphene sheets, which is stimulated to have anharmonic oscillation as strongly affected by the environment. The intensities of SHG are diminished in order of well-aligned multi-wall carbon nanotubes (MWCNTs), randomly-aligned MWCNTs, and then to single-wall CNTs.

Keywords: CARBON NANOTUBES; NONLINEAR OPTICS; SECOND HARMONIC GENERATION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2008.101

Publication date: June 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more