Skip to main content

Magnetic Properties of Ni-NiO (Ferromagnetic–Antiferromagnetic) Nanocomposites Obtained from a Partial Mechanochemical Reduction of NiO

Buy Article:

$113.00 plus tax (Refund Policy)

The magnetic properties of ferromagnetic (FM)–antiferromagnetic (AFM), Ni-NiO, nanocomposites obtained from a reactive ball milling reduction of NiO in H2 atmosphere have been studied. The formation of ferromagnetic Ni from antiferromagnetic NiO can be accurately followed by the increase of the saturation magnetization. The microstructure of the nanocomposite, consisting of FM Ni nanoparticles embedded in an AFM NiO matrix leads to exchange bias effects, i.e., loop shifts and coercivity enhancement, after field cooling from above the Néel temperature of NiO.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: COERCIVITY; EXCHANGE BIAS; NANOCOMPOSITES; NICKEL; NICKEL OXIDE; REACTIVE BALL MILLING

Document Type: Research Article

Publication date: 2008-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more