If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Thermal Annealing Dependence of High-Frequency Magnetoimpedance in Amorphous and Nanocrystalline FeSiBCuNb Ribbons

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The magnetoimpedance (MI) effect in Fe73.5Si13.5B9Nb3Cu1 melt-spun amorphous ribbons has been studied in the frequency range (1–500 MHz). Isothermal heating treatments in a furnace have been employed to nanocrystallize the ribbons (1 h at 565 °C in a vacuum of 10–3 mbar), while other samples were annealed at lower temperatures (400 and 475 °C during 1 h), in order to evaluate the influence of the annealing temperature on the MI effect. The high-frequency impedance was measured using a technique based on the reflection coefficient measurements of a specific transmission line by using a network analyzer. Frequency dependence of the MI ratio, ΔZ/Z, and both resistive, ΔR/R, and reactive, ΔX/X, components of magnetoimpedance were measured in the amorphous and annealed states, at different temperatures. A maximum value of the MI ratio of about 50% at a driving frequency of 18 MHz is obtained in the nanocrystalline (annealed at 565 °C) ribbon. Maxima for R/R of about 81% at 85 MHz and ΔX/X around 140% at 5 MHz were also achieved. It is revealed that the microstructural evolution in the nanocrystalline sample leads to a magnetic softening, an optimum domain structure and a permeability which is sensitive to frequency and applied magnetic field, generating a large MI response.

Keywords: AMORPHOUS RIBBONS; MAGNETOIMPEDANCE; MICROWAVE FREQUENCY; NANOCRYSTALLINE ALLOYS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2008.008

Publication date: June 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more