Skip to main content

Stress and Crystallization of Plasma Enhanced Chemical Vapour Deposition Nanocrystalline Silicon Films

Buy Article:

$105.00 plus tax (Refund Policy)

Nanocrystalline Si films were prepared with a RF-PECVD system using different SiH4/H2 ratios, plasma powers, substrate temperatures and annealing conditions. The film's intrinsic stress was characterized in relation to the crystallization fraction. Results show that an increasing H2 gas ratio, plasma power or substrate temperature can shift the growth mechanism across a transition point, past which nanocrystalline Si is dominant in the film structure. The film's intrinsic stress normally peaks during this transition region. Different mechanisms of stress formation and relaxation during film growth were discussed, including ion bombardment effects, hydrogen induced bond-reconstruction and nanocomposite effects (nanocrystals embedded in an amorphous Si matrix). A three-parameter schematic plot has been proposed which is based on the results obtained. The film structure and stress are presented in relation to SiH4 gas ratio, plasma power and temperature.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more