Skip to main content

Effects of Process Conditions on the Synthesis and Microstructure of Nano-Scale Metal-Containing Amorphous Carbon Thin Films

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Thin films of metal-containing amorphous carbon (a-C:Me) were deposited on a number of substrates, including silicon, Pt coated silicon, carbon coated silicon, polymer, and glass. The deposition was performed in a dc reactive sputter deposition system equipped with one single magnetron gun. The gases used were various mixtures of CH4 + Ar. The gas mixture was admitted to the deposition chamber at constant flow rate and ratio. Self-assembled alternating layer structure was observed under certain deposition conditions. Correlation between the self-assembled alternating layer structure and deposition parameters is presented and discussed. The role of carbon energy in the segregation of metal and carbon to form the layer structure is addressed.

Keywords: METAL-CONTAINING AMORPHOUS CARBON; REACTIVE SPUTTER DEPOSITION; SELF-ASSEMBLING

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2008.133

Publication date: 2008-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more