Skip to main content

Pulse Electroplating of Copper Film: A Study of Process and Microstructure

Buy Article:

$105.00 plus tax (Refund Policy)

Copper films with high density of twin boundaries are known for high mechanical strength with little tradeoff in electrical conductivity. To achieve such a high density, twin lamellae and spacing will be on the nanoscale. In the current study, 10 m copper films were prepared by pulse electrodeposition with different applied pulse peak current densities and pulse on-times. It was found that the deposits microstructure was dependent on the parameters of pulse plating. Higher energy pulses caused stronger self-annealing effect on grain recrystallization and growth, thus leading to enhanced fiber textures, while lower energy pulses gave rise to more random microstructure in the deposits and rougher surface topography. However in the extremes of pulse currents we applied, the twin densities were not as high as those resulted from the medium or relatively high pulse currents. The highest amount of nanoscale twinning was found to form from a proper degree of self-annealing induced grain structure evolution. The driving force behind the self-annealing is discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more