Skip to main content

Functionalisation of Glass with Iron Oxide Nanoparticles Produced by Laser Pyrolysis

Buy Article:

$105.00 plus tax (Refund Policy)

In the present work, a new process for depositing nanoparticle layers onto glass has been developed by using one of the most interesting nanoparticle generation technologies at the moment, which is based on the pyrolysis induced by laser of vapours combined with CVD of the particles onto glass. Nanoparticles prepared by this method were deposited into a hot silica substrate obtaining new nanocomposites with unique properties. The coated glasses present new specific functionalities such as colour, and interesting magnetic and optical properties. Control of the thickness and the iron oxide phase, either magnetic or not, has been achieved by adjusting the experimental conditions. Thus, thickness is controlled by the glass and the precursor temperature, while the iron phase is controlled by the precursor temperature and the nature and the flow of the carrier gas. This process is inexpensive, adaptable to current glass production technologies and takes place at atmospheric pressure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more