Skip to main content

Decaarginine-PEG-Artificial Lipid/DNA Complex for Gene Delivery: Nanostructure and Transfection Efficiency

Buy Article:

$113.00 plus tax (Refund Policy)

Oligoarginine conjugates are highly efficient vectors for the delivery of plasmid DNA into cells. Decaarginine-conjugated lipid (Arg10-PEG-lipid) was synthesized and the effects of Arg10-PEG-lipid concentration at a fixed DNA concentration on transfection efficiency and the structure of the complexes were studied below and above critical micelle concentration (CMC), and at the lipid nitrogen/DNA phosphate (N/P) ratio corresponding to transfection, respectively. Arg10-PEG-lipid at the concentration below CMC showed stronger interaction with DNA by fluorescence intensity distribution analysis, and significantly higher luciferase and green fluorescent protein expression than that above CMC. A phase-contrast cryo-transmission electron microscope (cryo-TEM) experiment showed that the morphology of the complexes depended on the N/P ratio. At a low N/P ratio corresponding to that in transfection at a lipid concentration below CMC, a net-like structure developed in which plasmid DNA was involved. A further increase in the N/P ratio, a large fibrous nanostructure of complexes, was also observed. Without DNA, these structures were not obtained. The cellular uptake mechanism of complexes using flow cytometry with inhibitors suggested that complexes with two different morphologies showed similar cellular uptake and uptake mechanism, macropinocytosis. Differences in transfection efficiency of the complexes may be explained by a large fibrous nanostructure inhibiting the cellular internalization of complexes or the release of DNA from macropinosomes into cytoplasm. Arg10-PEG-lipid/DNA complexes formed a favorable nanostructure for gene delivery, depending on the N/P ratio in water.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more