Skip to main content

In Vitro Cellular Uptake and Cytotoxic Effect of Functionalized Nickel Nanoparticles on Leukemia Cancer Cells

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Nickel nanoparticles (Ni NPs) have been applied in a wide range of areas because of their unique structure and properties such as catalysts, high-density magnetic recording media and others. However, little effort has been paid to their biological application and the concrete effect of Ni NPs on biological systems is still unknown. In this study, the possibility of the utilization of the magnetic Ni NPs in cancer cell studies was explored and the effects of the Ni NPs capped with positively charged tetraheptylammonium on leukemia K562 cells in vitro were investigated. Our observations of optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies indicate that the morphological changes of cancer cells induced by Ni NPs could be apparently observed. The results of 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay, DNA fragmentation and flow cytometry studies demonstrate that the Ni NPs could exert cytotoxicity to leukemia K562 cells at high concentration, and subsequently induce both apoptosis and necrosis of target cancer cells, whilst it had little impact on target cells when at low concentration. Meanwhile, functionalized Ni NPs with positively charged groups could enhance the permeability of cell membrane and facilitate the cellular uptake of outer target molecules into cancer cells. These findings reveal the potential mechanism of Ni NPs to target cancer cells which could induce the cytotoxicity to leukemia cancer cells and suggest the possibility for applications of the Ni NPs in related clinical and biomedical areas.

Keywords: ATOMIC FORCE MICROSCOPY (AFM); CANCER CELLS; CYTOTOXICITY; DNA FRAGMENTATION; FLOW CYTOMETRY; FUNCTIONALIZATION; MTT ASSAY; NICKEL NANOPARTICLES; SCANNING ELECTRON MICROSCOPY (SEM)

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2008.311

Publication date: 2008-05-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more