Skip to main content

Hydrothermal Synthesis and Photoluminescence of Eu2−xSmxSn2O7 (x = 0–2.0) Nanophosphors

Buy Article:

$105.00 plus tax (Refund Policy)

Eu2–xSmxSn2O7 (x = 0, 0.1, 0.5, 1.0, 1.5, and 2.0) solid solutions were successfully synthesized by a simple, mild hydrothermal process. The crystal structure, particle size, and chemical composition of the solid solutions were characterized by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. X-ray diffraction patterns and transmission electron microscopy images reveal that all the products were cubic pyrochlore-type Eu2–xSmxSn2O7 nano-crystals with the diameter of ∼20 nm. Due to efficient energy transfer from Sm3+ to Eu3+, the Eu2–xSmxSn2O7 (x = 0.1, 0.5, 1.0, and 1.5) nanocrystals exhibited strong 5D07F1 photoluminescence emission of Eu3+. The dominant 5D07F1 transition revealed good monochromaticity and low distortion of the Eu2–xSmxSn2O7 nanophosphors.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2008-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more