Skip to main content

Microstructures and Shape Memory Characteristics of a Nanostructured Ti-50.0Ni(at%) Alloy

Buy Article:

$113.00 plus tax (Refund Policy)


Nanostructured Ti-Ni alloys were prepared by cold working followed by annealing, and then their shape memory characteristics and superelasticity were investigated by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM), thermal cycling tests under constant load and tensile tests. Morphology of amorphous phases induced by cold working depended largely on the amount of cold working. They had domain like shape in the 40% cold rolled alloy, while had mainly wide band shape in the 70% cold rolled alloy. In 40% cold rolled alloy, the average grain size increased from 27 nm to 80 nm with increasing annealing temperature from 573 K to 673 K. Transformation elongation increases with raising annealing temperature, which was ascribed to the increase in grain size reducing the constraints of grain boundaries. Transformation hysteresis increased rapidly with raising annealing temperature up to 623 K, above which they almost keep constant, which was ascribed to the small grain size and large constraints of grain boundaries.


Document Type: Research Article


Publication date: 2008-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more