Skip to main content

Particle Morphology of Various SiC-Based Nanocomposite Powders Made by the Aerosol-Assisted Synthesis Method

Buy Article:

$105.00 plus tax (Refund Policy)

Herein, we present a part of a study on the preparation of SiC-based composite nanopowders by the two-stage Aerosol-Assisted Vapor Phase Synthesis (AAVS) method from organosilicon precursors (neat hexamethyldisiloxane, neat tetramethoxysilane, ethanol solutions of polydimethylsiloxane). Upon generation, liquid aerosol droplets were transported in a stream of argon through a ceramic reactor tube maintained at 1200 °C. The resulting solid by-products were collected on a nylon filter as bulk powders. Each raw powder was, subsequently, pyrolyzed in a furnace reactor heated to 1650 °C under a flow of argon. After the final pyrolysis at 1650 °C, mostly nanocrystalline silicon carbide powder with small quantities of free excess carbon was obtained from the neat hexamethyldisiloxane system, composite powder of not fully converted silica and SiC was prepared from the neat tetramethoxysilane system, and C-rich/SiC composite was made from the ethanol/polydimethylsiloxane solution system. The prevailing phase of the SiC component was the regular -SiC polytype. Most of the powders were composed of spheroidal particles – morphology imprinted during aerosol generation at 1200 °C and not much affected by the second-stage bulk pyrolysis at 1650 °C. The specifics of spheroidal morphology were characteristic of the applied precursor system.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more