Skip to main content

Rapid Synthesis and Characterization of Maghemite Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)

Fe2O3–SiO2 nanocomposites were prepared by a sol–gel method using various evaporation surface to volume (S/V) ratios ranging from 0.03 to 0.2. The Fe2O3–SiO2 sols were gelated at various temperatures ranging from 50 °C to 70 °C, and subsequently they were calcined in air at 400 °C for 4 hours. The structure and the magnetic properties of the prepared Fe2O3–SiO2 nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA), and vibrating sample magnetometer (VSM) measurements. The gelation temperature of the Fe2O3–SiO2 sols influenced strongly the particle size and crystallinity of the maghemite nanoparticles. It was observed that the particle size of maghemite nanoparticles increased with the increasing of the gelation temperature of the sols, which may be due to the agglomeration of the maghemite particles at elevated temperatures inside the microporosity of the silica matrix during the gelation process, and the subsequent calcination of these gels at 400 °C resulted in the formation of large size iron oxide particles. Magnetization studies at temperatures of 10, 195, and 300 K showed superparamagnetic behavior for all the nanocomposites prepared using the evaporation surface to volume ratio (S/V) of 0.1, 0.2, 0.09, and 0.08. The saturation magnetization, Ms, values measured at 10K were 5.5, 8.5, and 9.5 emu/g, for the samples gelated at 50, 60, and 70 °C, respectively. At the gelation temperature of 70 °C, -Fe2O3 crystalline superparamagnetic nanoparticles with the particle size of 9±2 nm were formed in 12 hours for the samples prepared at the S/V ratio of 0.2.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more