Skip to main content

Li+ and Li Interactions with Carbon Nanocage Structures

Buy Article:

$113.00 plus tax (Refund Policy)


Molecular dynamics simulations have been carried out to explore the structural properties of Li and Li+ confined inside single-walled carbon nanotubes (SWCNTs) and fullerene molecules. C–Li, C–Li+, Li–Li and Li+–Li+ interactions have been represented by pair functions and parameterized for the corresponding interactions. C–C interactions have been modeled by Tersoff potential. Open-ended SWCNTs with various sizes and chirality, as well as fullerenes with various sizes have been considered in the simulations. C–Li interaction is stronger than that of C–Li+. Endohedral Li+ doping caused structural deformations in C60. It has been found that for both Li and Li+ cases endohedral doping is favorable with respect to exohedral doping. This result is valid for both fullerenes and nanotubes.


Document Type: Research Article


Publication date: February 1, 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more