Skip to main content

Size and Surface Effects on Magnetic Properties of Fe3O4 Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)


In this study, size and surface effects on temperature and frequency dependent magnetic properties of superparamagnetic Fe3O4 nanoparticles in a size range of 1.1–11 nm are investigated by SPR technique. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles following lognormal proposed by Berger et al.18 The nanoparticles are considered as single magnetic domains with random orientations of magnetic moments and thermal fluctuations of anisotropic axes. The individual line shape function is derived from the damped precession equation of Landau-Lifshitz. Magnetic properties of the samples were strongly temperature and size dependent. The increase in SPR line width, the decrease in the resonance field and also increase in anisotropy filed by decreasing the temperature core–shell type structure of the nanoparticles and disordered magnetic structure (spin-glass like phase) of the particle surface. A linear microwave frequency dependence of the resonance field and the increase in the blocking temperature of the particles by the particle size were also observed.


Document Type: Research Article


Publication date: 2008-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more