Skip to main content

Chemical Synthesis of Anisotropic Nanocrystalline Sb2Te3 and Low Thermal Conductivity of the Compacted Dense Bulk

Buy Article:

$105.00 plus tax (Refund Policy)

We describe a one-step, one-pot non-aqueous route for the synthesis of Sb2Te3 nanocrystals with hexagonal shape and highly anisotropic nanostructures. The as-prepared nanostructures were characterized by XRD, TEM and HRTEM. The effect of the stabilizers on the nanocrystal morphology has been discussed in detail. We have studied the thermal conductivity of the compacted bulk from the Sb2 Te3 nanostructures. The results indicated that a very low thermal conductivity of about 1 W/mK at 300 K, comparing to 4.7 W/mK of the polycrystalline bulk, was achieved. The results indicated that nanostructured Sb2 Te3 is potentially a good candidate for engineered nanocomposites that can lead to high thermoelectric figure-of-merit.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: 2008-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more