Skip to main content

ZnO Nanosquids: Branching Nanowires from Nanotubes and Nanorods

Buy Article:

$113.00 plus tax (Refund Policy)


One-dimensional (1D) semiconductor nanostructures are promising building blocks for future nano-electronic and nanophotonic devices. ZnO has proven to be a multifunctional and multistructural nanomaterial with promising properties. Here we report the growth of ZnO nanosquids which can be directly grown on planar oxidized Si substrates without using catalysts and templates. The formation of these nanosquids can be explained by the theory of nucleation, and the vapor-solid crystal growth mechanism. The branching nanowires of these ZnO nanosquids could have potential application in multiplexing future nanoelectronic devices. The sharp band-edge emission at ∼380 nm indicates that these ZnO nanosquids are also applicable for interesting optoelectronic devices.


Document Type: Research Article


Publication date: 2008-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more