Skip to main content

Growth of Tin Dioxide Nanobelts Via Au-Catalytic VLS Process

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Ultra-long (several millimeters) tin dioxide SnO2 nanobelts were prepared by chemical vapor deposition at 850 °C. The X-ray powder diffraction (XRD) indicated that the as-prepared sample is tetragonal phase SnO2; field emission scanning electron microscopy (FESEM) reveals the as-prepared SnO2 is uniform nanobelts; transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) studies show the nanobelts is monocrystalline with width of hundreds of nanometers and growth along [101] crystal direction; X-ray energy-dispersive spectrometer (EDS) and photoluminescence (PL) spectrum were used to detail its composition and optical properties. The possible formation mechanism of these ultra-long nanobelts was also proposed on the basis of experiments.

Keywords: CHARACTERIZATION; GROWTH; SNO2 NANOBELTS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2007.908

Publication date: 2007-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more