Skip to main content

Analysis of Nanoindentation Response of Diatom Frustules

Buy Article:

$105.00 plus tax (Refund Policy)

Diatom frustules have been suggested for numerous nanotechnological applications. Experimental studies using nanoindenter have shown that the hardness and the stiffness of the frustules vary with location of indentation. To gain further insight, a computational framework has been developed where the Berkovich nanoindentation experiments were simulated by a rigid-deformable contact process. Three different approaches that provide progressively increasing level of understanding of the deformation behavior of frustules were adopted. The differences in the mechanical responses of the frustule due to variation of indentation location, size of pores, and distribution of pores were analyzed. It has been found that the effective stiffness of the frustule is linearly related to the porosity level and does not depend on the frustule size or its pore architecture. It has been shown that a 3D porous shell computational model is more appropriate to simulate the experimentally obtained mechanical response of diatom frustules.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 December 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more