Low-Temperature Growth of Flower-Shaped UV-Emitting ZnO Nanostructures on Steel Alloy by Thermal Evaporation

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Flower-shaped ZnO nanostructures, containing the triangular-shaped petals (sharpened tips and wider bases) have been achieved by simple thermal evaporation of high purity metallic zinc powder in the presence of oxygen at 440 °C on steel alloy substrate without the use of metal catalyst or additives. Detailed structural studies confirm that the obtained flower-shaped nanostructures are single crystalline and possesses a wurtzite hexagonal structure, grown along the c-axis in the [0001] direction. Raman and room temperature photoluminescence analysis substantiate a wurtzite hexagonal phase with a good crystal quality and a strong UV emission at 378 nm, respectively, indicating few or no structural defects. Additionally, a detailed possible growth mechanism has also been discussed.

Keywords: LOW TEMPERATURE GROWTH; OPTICAL PROPERTIES; STEEL ALLOY SUBSTRATE; THERMAL EVAPORATION; UV-EMITTING; ZNO

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2007.857

Publication date: December 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more