Skip to main content

Swift Morphosynthesis of Hierarchical Nanostructures of CdS via Microwave-Induced Semisolvothermal Route

Buy Article:

$105.00 plus tax (Refund Policy)

For the swift generation of hierarchical nanostructures of CdS, we propose herein a docile microwave-induced semi-solvothermal reaction (i.e., involving simultaneous usage of nonaqueous and aqueous solvents) between cadmium acetate and thiourea in binary solution of diethylenetriamine and deionized water. Typically, such microwave-assisted reaction was accomplished within 5 minutes as against 12 h required in conventional approach. The resultant products were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis by X-rays, laser Raman spectroscopy and photoluminescence spectroscopy. X-ray diffraction data indicates occurrence of hexagonal CdS with strong (002) preferred orientation. SEM images reveal formation of solvent-ratio dependent complex morphological (i.e., hierarchical) features both at the microscale and nanoscale. Fine-scale microstructure examination by TEM discloses formation of entangled nanorods, nano(potato)sticks, nanoflowers etc. Elemental analysis facility (equipped with TEM) suggests presence of Cd rich product. Raman spectroscopy shows the fundamental and overtone bands pertaining to hexagonal CdS with remarkable enhancement in relative intensities of such bands in case of sample corresponding to diethylen-etriamine(DETA)/deionized water(DI) volume ratio of 6:1. Room temperature photoluminescence spectra mainly reveal broad asymmetric emission background composed of classical band edge and trap-induced emission in CdS.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 December 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more