Skip to main content

Synthesis of Chainlike In2Ge2O7/Amorphous GeO2 Core/Shell Nanocables and Their Luminescence

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Novel chainlike In2Ge2O7/amorphous GeO2 core/shell nanocables were successfully synthesized by the simple thermal evaporation method without the presence of catalyst. The growth process of the nanocables is based on vapor–solid (VS) growth mechanism. Its morphology and microstructures were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence spectroscopy. Studies indicate that typical chainlike nanocables consist of single crystalline In2Ge2O7 nanowires (core) with diameter of about 30 nm and amorphous GeO2 chainlike nanostructures (shell). Four emission peaks, namely 401 nm, 448.5 nm, 466.5 nm, and 491 nm, were observed in the room-temperature photoluminescence measurements.

Keywords: CHAINLIKE; LUMINESCENCE; MICROSTRUCTURE; NANOCABLES

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2007.885

Publication date: 2007-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more