Skip to main content

Optimization of the Synthesis of α-MoO3 Nanoribbons and Hydrodesulfurization (HDS) Catalyst Test

Buy Article:

$113.00 plus tax (Refund Policy)


An optimized process for synthesis of α-MoO3 nanoribbons characterized by uniform morphology and composition was carried out. The optimized process turned out to be the aging of a precursor of an aqueous solution of ammonium heptamolybdate for a week under constant stirring at 333 K; followed by hydrothermal treatment for 36 h up to 48 h at 473 K. The dimensions of the nanoribbons were between 5 and 10 m in length and a width between 100 and 600 nm. The thickness was between 60 and 200 nm. This material was tested for hydrodesulfurization (HDS) of dibenzothiophene (DBT) by in situ activation and showed its catalytic activities to be similar to those of unsupported MoS2 catalysts. The structure and morphology of these materials was characterized by analytical transmission electron microscopy, scanning electron microscopy, and X-ray diffraction using the Rietveld method to determine the quantitative crystallographic phases. A chemical semi-quantitative analysis was carried out by energy dispersive spectroscopy and a qualitative analysis was carried out by electron energy loss spectroscopy.


Document Type: Research Article


Publication date: 2007-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more