Skip to main content

Optical and Magnetic Properties of Ni-Doped ZnO Nanocones

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Ni-doped ZnO flower-like nanocones with wurzite structures were produced by oxidative evaporation of Zn and Ni powders. The Ni doping did not change the ZnO wurtzite structure. Raman scattering indicated that the normal lattice vibration modes are related to the hexagonal ZnO. Ni clusters and Ni oxides phases did not existed in the sample as characterized by XRD, XPS, and TEM. Upon excitations the nanocones could emit strong green light at 525 nm, which can be directly observed with a digital camera. The magnetic measurement indicated that the Ni-doped ZnO nanocone was high-Curie-temperature magnetic semiconductor.

Keywords: GREEN LIGHT EMISSION; HIGH-CURIE-TEMPERATURE MAGNETIC SEMICONDUCTOR; NI-DOPED ZNO NANOCONES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2007.807

Publication date: October 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2007/00000007/00000010/art00043
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more