Skip to main content

Solid Lipid Nanoparticles Incorporating Melatonin as New Model for Sustained Oral and Transdermal Delivery Systems

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Introduction: melatonin (MT) is a hormone produced by the pineal gland at night, involved in the regulation of circadian rhythms. For clinical purposes, exogenous MT administration should mimic the typical nocturnal endogenous MT levels, but its pharmacokinetics is not favourable due to short half-life of elimination. Aim of this study is to examine pharmacokinetics of MT incorporated in solid lipid nanoparticles (SLN), administered by oral and transdermal route. SLN peculiarity consists in the possibility of acting as a reservoir, permitting a constant and prolonged release of the drugs included. In 7 healthy subjects SLN incorporating MT 3 mg (MT-SLN-O) were orally administered at 8.30 a.m. MT 3 mg in standard formulation (MT-S) was then administered to the same subjects after one week at 8.30 a. m. as controls. In 10 healthy subjects SLN incorporating MT were administered transdermally (MT-SLN-TD) by the application of a patch at 8.30 a.m. for 24 hours. Compared to MT-S, Tmax after MT-SLN-O administration resulted delayed of about 20 minutes, while mean AUC and mean half life of elimination was significantly higher (respectively 169944.7 ± 64954.4 pg/ml × hour vs. 85148.4 ± 50642.6 pg/ml × hour, p = 0.018 and 93.1 ± 37.1 min vs. 48.2 ± 8.9 min, p = 0.009). MT absorption and elimination after MT-SLN-TD demonstrated to be slow (mean half life of absorption: 5.3 ± 1.3 hours; mean half life of elimination: 24.6 ± 12.0 hours), so MT plasma levels above 50 pg/ml were maintained for at least 24 hours. This study demonstrates a significant absorption of MT incorporated in SLN, with detectable plasma level achieved for several hours in particular after transdermal administration. As dosages and concentrations of drugs included in SLN can be varied, different plasma level profile could be obtained, so disclosing new possibilities for sustained delivery systems.

Keywords: MELATONIN; SOLID LIPID NANOPARTICLES; TRANSDERMAL

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2007.809

Publication date: 2007-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more