Skip to main content

Performance of Carbon Arc-Discharge Nanotubes to Hydrogen Energy Storage

Buy Article:

$105.00 plus tax (Refund Policy)

Adsorption properties of gram-scale samples of different kind of arc discharge nanotubes were studied, namely: (A) raw collaret collected on the cathode, (B) raw soots collected on the lateral reactor wall, (C) thermally treated soot, and (D) thermally then chemically treated soot. The morphology, structure, and composition of these materials were characterized by SEM, TEM, TGA, and BET. In addition, hydrogen adsorption isotherms were recorded experimentally for A, B, and D samples over the pressure range of 0 to 55 bar at ambient temperature. Our experiments indicated a maximum—yet weak—hydrogen storage at room temperature of ∼0.13 H2 wt% for the purified product (D).
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: 2007-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more