Skip to main content

Ultra-High Oxidation Resistance of Suspended Single-Wall Carbon Nanotube Bundles Grown by an "All-Laser" Process

Buy Article:

$113.00 plus tax (Refund Policy)


Single-wall carbon nanotubes (SWCNTs) were laterally grown on SiO2/Si substrates by means of an "all-laser" growth process. Our "all-laser" process stands out by its exclusive use of the same pulsed UV laser, first, to deposit the CoNi nanocatalyst and, second, to grow SWCNTs through the laser ablation of a pure graphite target. The "all-laser" grown SWCNTs generally self-assemble into bundles (5–15 nm-diam.) sprouting from the CoNi nanocatalyst and laterally bridging the 2 m gap separating adjacent catalysed electrodes (in either "suspended" or "on-substrate" geometries). A comparative study of the oxidation resistance of both suspended and on-substrate SWCNTs was achieved. The "all-laser" grown SWCNTs were subjected to annealing under flowing oxygen at temperatures ranging from 200 to 1100 °C. Systematic scanning electron microscopy observations combined with micro-Raman analyses revealed that more than 20% of suspended nanotubes were still stable at temperatures as high as 900 °C under flowing O2 while the on-substrate counter-part were completely burnt out at this temperature. Accordingly, the activation energy, as deduced from the Arrhenius plot, of the suspended SWCNTs is found to be as high as ∼180 kJ mol−1 (∼9 times higher than that of the on-substrate ones). The high quality (almost defect-free) of the nanotubes synthesized by the "all-laser" approach, their protected tips into the embedded CoNi catalyst nanolayer together with their suspended geometry are thought to be responsible for their unprecedented ultra-high oxidation resistance. This opens up new prospects for the use of these suspended nanotubes into nanodevices that have to operate under highly oxidizing environments.


Document Type: Research Article


Publication date: October 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more