Skip to main content

CNT Based Actuators: Experimental and Theoretical Investigation of the In-Plain Strain Generation

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Actuators based on carbon nanotubes (CNT) have the potential to generate high forces at very low voltages. The density of the raw material is just 1330 kg/m3, which makes them well applicable for lightweight applications. Moreover, active strains of up to 1% can be achieved—due to the CNTs dimensional changes on charge injection. Therefore the nanotubes have to be arranged and electrically wired like electrodes of a capacitor. Immersing the nanotubes in an electrolyte increases the capacity of the system by allowing electro-chemical double layers to be built around the CNT. For the experimental investigation of the strain generation, carbon nanotube sheets are manufactured by vacuum filtration. The in-plain strain response is being examined, when applying a voltage to the system. This paper presents experimental investigations of the systems response in dependence of varying system parameters like capacity and resistance. Dependencies of the actuator system were formulated from these experimental results. A guideline of how to improve a CNT based actuator is derived from these dependencies.

Keywords: ACTUATOR; CARBON NANOTUBES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2007.837

Publication date: October 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2007/00000007/00000010/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more