Skip to main content

Synthesis and Field Emission Characterization of Titanium Nitride Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)

Single crystalline titanium nitride nanowires have been successfully synthesized through a chloride-assisted carbon thermal reduction method using the active carbon, TiO2 and NaCl powders as precursors and cobalt nanoparticles as catalyst. The products were characterized by X-ray diffraction, electron microscopy, and energy-dispersive X-ray spectroscopy. The TiN nanowires possess a cubic structure with typical diameter of 20–60 nm and length up to microns. The field emission property of the TiN nanowires has been characterized for the first time, which follows the conventional Fowler-Nordheim behavior and shows the low turn-on field of 7.1 V m−1 and good emission stability, indicating the potential applications. The formation mechanism of the TiN nanowires has also been discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Short Communication

Publication date: 2007-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more