Skip to main content

Nanostructured La(Sr)CrO3 Through Gel Combustion: Sintering and Electrical Behavior

Buy Article:

$113.00 plus tax (Refund Policy)


Nanostructured La(Sr)CrO3 (LSC) powders was prepared through glycine-nitrate gel combustion process. It was shown for the first time that the use of relatively inexpensive CrO3 as a starting material for chromium has a potential for the bulk preparation of sinter-active LSC powder. As-prepared powder when calcined at 700 °C resulted in LSC along with a small amount of SrCrO4 as a secondary phase. The powder was found to be composed of soft agglomerates with a particle size of ≈70–270 nm. The average agglomerate size was found to be 0.95 m. The cold pressing and sintering of the LSC powder at 1450 °C resulted in mono-phasic La0.8Sr0.2CrO3 with 94% of its theoretical density. This is the lowest sintering temperature ever reported for La0.8Sr0.2CrO3. The conductivity of the sintered La0.8Sr0.2CrO3 at 1000 °C was found to be ≈18 S cm−1.


Document Type: Research Article


Publication date: August 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more