Skip to main content

Modification of Multi-Walled Carbon Nanotubes by Diels-Alder and Sandmeyer Reactions

Buy Article:

$113.00 plus tax (Refund Policy)

Random (L) and aligned (A) multi-walled carbon nanotubes (MWNTs) were modified by Diels-Alder (DA) [4+2] cycloaddition, Sandmeyer (SM) reaction and by catalytic oxidation (OX). The properties of modified carbon nanotubes were studied by dispersability tests, elemental analysis, thermogravimetry/mass spectrometry, X-ray photoelectron spectroscopy, and NMR spectroscopy. The cycloaddition reaction could only be successfully performed with the L-MWNTs in molten and in solution state by using an aluminum chloride homogeneous catalyst. The efficiency and thermal stability of the solution phase cycloaddition were much higher than in the case of modification in the molten phase. The functionalization of both types of MWNTs by Sandmeyer reaction was carried out by copper(I) and iron(II) ions that helped in the radical decomposition of diazonium salts. Successful functionalization of nanotubes is achieved by a long decomposition time of the thermally activated diazonium salts. To the contrary, in the case of radical decomposition of diazonium salts, the time is not a decisive parameter. The dispersability tests have proved the changes in the physical features of modified carbon nanotubes depending on the hydrophobic and hydrophilic character of the solvents. The presence of the modifying groups and their fragments from the functionalized MWNTs has been demonstrated by thermogravimetry/mass spectrometry (TG/MS). Relatively high concentration of sulfur atoms was detected by X-ray photoelectron spectroscopy in nanotubes modified by sulfur substituent groups. In the case of catalytic oxidation, the X-ray photoelectron spectroscopic signal of oxygen bound to nanotubes showed considerable change as compared to pristine nanotubes. Due to the high thermal stability of modified multi-walled carbon nanotubes, the functionalized derivatives are applicable in several industrial fields.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2007-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more