If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Crystallization of Phi29 Spindle-Shaped Nano-Bar Anti-Receptor with Glycosidase Domain

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Bacteriophage phi29 is a small, well-characterized dsDNA virus that infects Bacillus subtilis. The anti-receptor of phi29 consists of oligomers of the 854-residue protein gp12 and plays an essential role in infection initiation by binding to the receptor on the host cell surface. Oligomers of gp12 exhibit a narrow spindle-shaped configuration 15nm in length as revealed by electron microscopy and thus are potentially useful nanoscale tools, building blocks, or motor arms. To understand the mechanism of viral infection initiation and to provide a basis for engineering recombinant gp12 for nanotechnology applications, we have initiated structural and bioinformatics studies of gp12. We report here the growth of crystals of gp12 that diffract to 3.0 Å resolution. The space group is P3121 or P3221 with unit cell lengths of a = 84.4 Å and c = 167.6 Å. The asymmetric unit is predicted to contain one gp12 molecule and 32% solvent (VM = 1.8 Å3/Da). Domain boundary analysis revealed that gp12 may harbor three domains besides a 24 residue auto-cleave region. The N-terminal half of gp12 contains a domain with about 400 residues that held 44% sequence identity to endopoly-galacturonase, a fungal glycosyl hydrolase that catalyzes hydrolysis of the polygalacturonic acid α1-4 glycosidic linkage found in plant cell walls. Interestingly, the cell wall of Bacillus subtilis contains a polysaccharide component made from two sugar monomers, N-acetylmuramic acid and N-acetylglucosamine, which resemble α-galacturonic acid in that they possess a six-membered pyranose ring. Hence, polygalacturonic acid of plant cell walls and peptidoglycan of bacterial cell walls may offer a similar topography in relation to the polysaccharides. These results suggest a function for gp12 as a cell-wall degrading enzyme in addition to its role in recognition of the host receptor.

Keywords: CRYSTALLIZATION; DOMAIN BOUNDARY ANALYSIS; PHI29; VIRAL RECEPTOR ANTI-RECEPTOR INTERACTION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2007.856

Publication date: August 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more