Skip to main content

Elevated Temperature Nanoindentation and Viscoelastic Behaviour of Thin Poly(ethylene terephthalate) Films

Buy Article:

$107.14 + tax (Refund Policy)

A commercial nanoindentation system fitted with a heating stage and heated indenter has been used to investigate how the elevated temperature nanoscale mechanical properties of poly(ethylene terephthalate) films vary with their processing history and crystallinity over the temperature range 60–110 °C. Three additive-free thin films were tested; an undrawn amorphous film, a uniaxially drawn film, and a commercial biaxially drawn Melinex film. A sharp decrease in mechanical properties was observed between 70 and 80 °C on the undrawn and uniaxial film consistent with the presence of a glass transition over this temperature range in agreement with literature values for bulk materials. In contrast, a gradual decrease in properties was observed over the same temperature range on the biaxially oriented film. The high crystallinity of the biaxial film could be beneficial in extending the operating temperature of the film. There is a minimum in the elastic recovery parameter around 80 °C on both the amorphous and biaxial film. This indicates that the elastic recovery parameter may be more sensitive to changes in mechanical properties occurring at/near the glass transition region than the hardness or modulus alone. A recently introduced dimensionless parameter for creep, A/d(0), was also found to be a promising way to characterise the increased time-dependent deformation around the glass transition region.

Keywords: CREEP; GLASS TRANSITION; NANOINDENTATION; POLY(ETHYLENE TEREPHTHALATE)

Document Type: Research Article

Publication date: 01 July 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content