Skip to main content

Electrical Conductivity and Optical Properties of Polyaniline Intercalated Graphite Oxide Nanocomposites

Buy Article:

$113.00 plus tax (Refund Policy)


Layered graphite oxide is used as host material for the synthesis of conducting polymer intercalated nanocomposites. Powder X-ray diffraction, Fourier transform infrared, and UV-VIS absorption spectra indicate the formation of polyaniline within the interlamellar spaces of graphite oxide. The red shift of UV-VIS absorption associated with graphite oxide is found. The direct current (dc) conductivity increases by about three orders of magnitude compare with pristine graphite oxide. The temperature dependence dc conductivity of the nanocomposite follows Mott's three-dimensional variable range hopping. The alternating current (ac) conductivity suggests correlated barrier hopping of conduction process. The conductivity relaxation time varies in the range of 10−5–10−7 Sec.


Document Type: Research Article


Publication date: 2007-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more