Skip to main content

Effect of Temperature on Rheological Properties of Copper Oxide Nanoparticles Dispersed in Propylene Glycol and Water Mixture

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

This paper reports on experimental investigation of the rheological behavior of copper oxide nanoparticles dispersed in a 60:40 propylene glycol and water mixture. Nanofluids of a particle volume concentration from 0 to 6% have been tested in this study. The experiments were conducted over a temperature range of −35 °C to 50 °C to establish their behavior for use as a heat transfer fluid in cold climates. The experiments reveal that this nanofluid in the range of particle volume percentage tested exhibits a Newtonian behavior. A new exponential correlation has been developed from the experimental data, which expresses the viscosity as a function of particle volume percent and the temperature of the nanofluid. The slope of relative viscosity curve was found to be higher at lower temperatures.

Keywords: NANOFLUID; PROPYLENE GLYCOL; RHEOLOGY; TEMPERATURE DEPENDENCY; VISCOSITY

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2007.437

Publication date: July 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2007/00000007/00000007/art00015
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more