Skip to main content

Synthesis, Characterization, and Assembly of -In2S3 Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Semiconductor nanoparticles of Indium Sulphide were synthesized by a hydrothermal method using InCl3 and Na2S. Powder X-ray Diffraction analysis confirmed that the product obtained was nanocrystals of single-phase -In2S3. The crystallite size distribution was obtained from the diffraction profile and the average size was ∼5 nm. The compositional analyses performed on the as prepared powder showed that the material was devoid of any impurity with an In:S ratio very close to 2:3. A colloid of very fine In2S3 particles was obtained from the as-prepared powder by suspending them in acetonitrile. The optical absorption of this colloid showed evidence of strong quantum confinement of excitons and as a result the particles yielded intense photoluminescence in the violet-blue region. These colloidal particles were then electrophoretically driven on to a transparent conducting substrate to assemble into a nanostructure. A Grazing Incidence X-ray Diffraction analysis of the deposited layer revealed that the preferred orientation noticed in the native powder was removed in the deposit. The surface morphology of the deposit studied using SEM and AFM displayed an inherent ordering behaviour in the clusters organized into a two-dimensional film. The locus of the cluster lines tend to form closed circles, at the nanoscopic as well as microscopic scales, indicative of certain strong neighborhood correlations. Such structures may be expected to exhibit novel correlated properties also.

Keywords: BETA-INDIUM SULPHIDE; BLUE LUMINESCENCE; CLUSTER ORGANIZATION; NANOASSEMBLY; QUANTUM DOT

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2007.774

Publication date: June 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
asp/jnn/2007/00000007/00000006/art00075
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more