Thickness Dependent Structural, Magnetic and Transport Properties of Nanostructured Cobalt Thin Films

$113.00 plus tax (Refund Policy)

Buy Article:


This paper presents structural, magnetic, and transport properties measurements carried out on Co thin film as a function of thickness. The structure of the Co thin film changes from amorphous to nano-crystalline with the increase in film thickness. The corresponding magnetic and transport measurements show drastic changes in coercivity, saturation field and resistivity value as a function of Co film thickness. Observed magnetization and resistivity behaviour is mainly attributed to the (i)Change in crystal structure, (ii)stress relaxation, (iii)grain growth as revealed by X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements.


Document Type: Research Article


Publication date: June 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more