Skip to main content

Catalytic Activity of Gold Nanoparticles Incorporated into Modified Zeolites

Buy Article:

$105.00 plus tax (Refund Policy)

Gold catalysts modified by Fe and Ni and supported on different zeolite matrixes have been studied by TEM, TPR, and catalytic testing. The presence of a metal oxide additive allows stabilizing small gold particles, particularly in the case of Fe. The shape of light-off curves shows two temperature regions of the catalyst activity, a low-temperature range below 250 °C and a high-temperature range above 300 °C. This situation is explained considering the existence of at least two types of catalytically active sites of gold assigned to gold clusters and gold nanoparticles, respectively, while the ionic state of gold (Au3+) remains inactive. It is shown that interaction of gold with Fe promoter leads to activation of catalysts at low temperature due to a change of electronic state and redox properties of gold. NiO additive cause a similar, but less pronounced effect.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2007-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more