Skip to main content

Structure and Dynamics of Confined Water Inside Narrow Carbon Nanotubes

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

We have performed atomistic molecular dynamics (MD) simulations of water molecules inside narrow, open-ended carbon nanotubes placed in a bath of water molecules. The radius of the tube is such that only a single file of water molecules is allowed inside the tube. The confined water molecules are shown to be positionally ordered even at a temperature of 300 K. The calculated mean-square displacement (MSD) of the confined water molecules reveals that initially the water molecules undergo ballistic motion that crosses over to normal (Fickian) diffusion at longer times. We also develop a random-walk model in 1D for the motion of a cluster of water molecules inside the nanotube. The agreement of the MSD calculated from the MD simulation and from the 1D random-walk model establishes the occurrence of normal diffusion of water molecules even in a tube where single-file diffusion is expected.

Keywords: CONTINUOUS-TIME RANDOM WALK; DISCRETE-TIME RANDOM WALK; HYDROGEN BOND ENERGY; HYDROPHOBIC PORE; WATER CONDUCTION

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2007.718

Publication date: 2007-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more