Skip to main content

Electric Field Assisted Growth of Self-Organized CdS Films: Size Dependent Structural and Optical Properties

Buy Article:

$105.00 plus tax (Refund Policy)

This paper presents a systematic study of electric field assisted growth of self-organized cadmium sulphide (CdS) quantum dots (Q-CdS). CdS thin films of self-organized quantum dot like structure with different particle size have been successfully deposited simply by varying the concentration of surfactant in the reaction matrix. The model to describe the self-organization is also discussed. The size of CdS nanoparticles can be altered from 68 nm (corresponding to bulk) to 2 nm. The structural, optical, and morphological properties of Q-CdS films have been investigated. A blue shift has been observed in optical absorption and photoluminescence spectra. The strained growth of Q-CdS films has been observed. The microstructural strain calculated from peak broadening reveals an increase in strain with decreasing particle size. This study may provide a convenient method to deposit size selective and organized nanocrystalline semiconductor thin films.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2007-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more