Skip to main content

Functionalized Nano-Magnetic Particles for an In Vivo Delivery System

Buy Article:

$113.00 plus tax (Refund Policy)


Nanotechnologies to allow the nondisruptive introduction of carriers in vivo have wide potential for therapeutic delivery system. We have prepared functional nano-magnetic particles (d = 3 nm) by silanization with (3-aminopropyl) triethoxysilane. For the purpose of functionalizing the surface of the nanoparticles with amino groups for subsequent cross-linking with pharmaceuticals and biomolecules. The extremely small particles were successfully introduced into living cells without any further modification to enhance endocytic internalization, such as the use of a cationic help. The cells containing the internalized particles continued to thrive, indicating that the particles have no inhibition effect for mitosis. In addition, the particles could be incorporated into the subcutaneous tissue of mouse's ear from ear skin and were able to be localized upon application of an external magnetic field. The functionalized nano-magnetic particles are expected to be useful as a new delivery tool.


Document Type: Research Article


Publication date: March 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more